A fuzzy coherent rule mining algorithm

نویسندگان

  • Chun-Hao Chen
  • Ai-Fang Li
  • Yeong-Chyi Lee
چکیده

In real-world applications, transactions usually consist of quantitative values. Many fuzzy data mining approaches have thus been proposed for finding fuzzy association rules with the predefined minimum support from the give quantitative transactions. However, the common problems of those approaches are that an appropriate minimum support is hard to set, and the derived rules usually expose common-sense knowledge which may not be interesting in business point of view. In this paper, an algorithm for mining fuzzy coherent rules is proposed for overcoming those problems with the properties of propositional logic. It first transforms quantitative transactions into fuzzy sets. Then, those generated fuzzy sets are eywords: uzzy set uzzy association rules uzzy coherent rules embership function ata mining collected to generate candidate fuzzy coherent rules. Finally, contingency tables are calculated and used for checking those candidate fuzzy coherent rules satisfy the four criteria or not. If yes, it is a fuzzy coherent rule. Experiments on the foodmart dataset are also made to show the effectiveness of the proposed algorithm. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

A Survey of Fuzzy Based Association Rule Mining to Find Co- Occurrence Relationships

Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD. It is the process that results in the discovery of new patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract knowledge from an existing data set and tra...

متن کامل

A Survey on Fuzzy Association Rule Mining Methodologies

Fuzzy association rule mining (Fuzzy ARM) uses fuzzy logic to generate interesting association rules. These association relationships can help in decision making for the solution of a given problem. Fuzzy ARM is a variant of classical association rule mining. Classical association rule mining uses the concept of crisp sets. Because of this reason classical association rule mining has several dr...

متن کامل

An Efficient Fuzzy Weighted Association Rule Mining with Enhanced Hits Algorithm

Association rule mainly focuses on large transactional databases. In association rule mining all items are considered with equal weightage. But it is not suitable for all datasets. The weight should be considered based on the importance of the item. In our previous work HITS algorithm (Hyperlink Induced Topic Search) is used to find the weight of an item w-support is calculated for generating f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013